SYNTHESIS OF A NEW PHOSPHORUS-FUNCTIONALIZED NITRILE OXIDE, $\alpha-(DIETHYLPHOSPHONO)ACETONITRILE \ OXIDE, \ AND \ CYCLOADDITION \\ LEADING TO 3-(DIETHYLPHOSPHONOMETHYL)-Δ^2-ISOXAZOLINES$

Otohiko TSUGE,* Shuji KANEMASA, and Hiroyuki SUGA
Research Institute of Industrial Science, and Department
of Molecular Science and Technology, Interdisciplinary
Graduate School of Engineering Sciences, Kyushu University,
Kasugakoen, Kasuga 816

Cycloaddition of α -(diethylphosphono)acetonitrile oxide, a new phosphorus-functionalized nitrile oxide, leads to 3-phosphonomethyl- Δ^2 -isoxazolines which are useful as Δ^2 -isoxazoline unit-introducing reagents.

Nitrile oxides have been much more frequently used in organic synthesis, especially in the elaboration of complex molecules, than any other 1,3-dipoles. The importance of nitrile oxide is based on its high reactivity toward a wide range of olefins, both electron-poor and -rich types, forming Δ^2 -isoxazolines which are synthetic equivalents of β -hydroxy ketones (aldols), γ -amino alcohols, and α,β -unsaturated ketones.

In recent years, have been reported synthetic applications of several nitrile oxides carrying such functinality as hydroxy, $^{5)}$ ester, $^{6)}$ sulfonyl, $^{7)}$ and acetal moieties. Their cycloaddition provides functionalized 2 -isoxazolines.

This communication describes the first synthesis of phosphorus-functionalized nitrile oxide, α -(diethylphosphono)acetonitrile oxide $\underline{1}$, and its cycloaddition with a variety of olefins. 3-(Diethylphosphonomethyl)- Δ^2 -isoxazolines formed are useful as reagents for the introduction of a Δ^2 -isoxazoline functionality into a molecule by a carbon-carbon bond forming reaction.

Our synthetic route of $\underline{1}$ starts from diethylphosphonoacetaldehyde $\underline{2}$ since it is readily available in large quantities by the Arbuzov reaction between triethyl phosphite and bromoacetaldehyde diethylacetal. The aldehyde $\underline{2}$ was converted into the oxime $\underline{3}$ (syn:anti=3:4 (1 H-NMR)) in 95% yield (Scheme 1). Although the oxidation of $\underline{3}$ with lead tetraacetate or sodium hypochlorite ended in failure, $\underline{1}$ was found successfully accessible by the bromination with NBS followed by dehydrobromination with triethylamine. The chlorination of $\underline{3}$ with NCS led to a mixture of the expected imidoyl chloride $\underline{5}$ and undesired α -chloro oxime $\underline{6}$ whose ratio varied within the range of 1:1 to 16:3 depending upon the reaction conditions. $\underline{12}$

The nitrile oxide $\underline{1}$ was captured as cycloadduct $\underline{8a}$ with N-(p-tolyl)maleimide $\underline{7a}$. A typical procedure is as follows: A mixture of $\underline{3}$ and NBS (2 equiv.) in dry DMF was allowed to react at -20 °C for 1 h and then 0 °C for 0.5 h. The mixture was diluted with dry ether (half the volume of DMF), 13) and a solution of $\underline{7a}$ and

$$P(OEt)_{3} + BrCH_{2}CH(OEt)_{2} \xrightarrow{a} (EtO)_{2} \xrightarrow{PCH_{2}CHO} \xrightarrow{c} (EtO)_{2} \xrightarrow{PCH_{2}CH=NOH} \xrightarrow{d} (EtO)_{2} \xrightarrow{PCH_{2}C=NOH} \xrightarrow{d} Br$$

$$\xrightarrow{e} (EtO)_{2} \xrightarrow{PCH_{2}C \equiv N \Rightarrow O} \xrightarrow{f} O$$

$$\xrightarrow{N} \xrightarrow{CH_{2}P(OEt)_{2}} O$$

$$\xrightarrow{EtO)_{2} \xrightarrow{PCH_{2}C = NOH}} (EtO)_{2} \xrightarrow{PCH_{2}C = NOH} (EtO)_{2} \xrightarrow{PCH_{2}CHCH=NOH} O$$

$$\xrightarrow{1} O$$

$$\xrightarrow{N} \xrightarrow{PCH_{2}C \equiv N \Rightarrow O} O$$

$$\xrightarrow{N} \xrightarrow{CH_{2}P(OEt)_{2}} O$$

$$\xrightarrow{EtO)_{2} \xrightarrow{PCH_{2}C = NOH}} (EtO)_{2} \xrightarrow{PCH_{2}C = NOH} O$$

$$\xrightarrow{1} O$$

$$\xrightarrow{N} \xrightarrow{DCH_{2}P(OEt)_{2}} O$$

$$\xrightarrow{N} \xrightarrow{CH_{2}P(OEt)_{2}} O$$

$$\xrightarrow{N} \xrightarrow{CH_{2}P(OEt)_{2}} O$$

$$\xrightarrow{N} \xrightarrow{DCH_{2}P(OEt)_{2}} O$$

$$\xrightarrow{DCH_{2}P(OEt)_{2}} O$$

$$\xrightarrow{DCH_{2}$$

a: 185-190 °C, b: HCl, p-hydroquinone, 70-80 °C, c: NH₂OH·HCl, EtOH, rt, d: NBS, e: NEt₃, f: N-(p-tolyl) maleimide $\frac{7a}{2}$ Scheme 1.

triethylamine (each equimolar to $\underline{3}$) in dry ether was added. The reaction was continued at room temperature until $\underline{7a}$ was all consumed (checked on TLC). The followed hydrolytic work up, extraction with dichloromethane, and column chromatography over silica gel gave 8a in 80% yield.

The cycloaddition reactions of $\underline{1}$ with a variety of olefinic dipolar philes $\underline{7b}$ - $\underline{7i}$ gave the corresponding Δ^2 -isoxazolines $\underline{8b}$ - $\underline{8i}$ all as single regionsomers (Scheme 2 and Table 1).

$$\underbrace{3} \underbrace{-} \underbrace{1} \underbrace{-} \underbrace{0}^{\text{N}} \underbrace{-} \underbrace{CH_{2}^{\text{P}}(\text{OEt})_{2}}_{\text{W}} \underbrace{\frac{1}{7} \text{ and } \underline{8}:}_{\text{W}} \underbrace{\frac{b}{1}} \underbrace{\frac{b}{1}} \underbrace{\text{W} = \text{Ph}}_{\text{W}} \underbrace{\frac{f}{1}: \text{W} = \text{CN}}_{\text{Q}: \text{W} = \text{N} = \text{Ph}}_{\text{Q}: \text{W} = \text{COMe}} \underbrace{\frac{f}{1}: \text{W} = \text{CN}}_{\text{Q}: \text{W} = \text{COMe}}_{\text{Q}: \text{Q}: \text{W} = \text{COMe}}_{\text{Q}: \text{W} = \text{COMe}}_{\text{Q}: \text{Q}: \text{COMe}}_{\text{Q}: \text{Q}: \text{COMe}}_{\text{Q}: \text{Q}: \text{COMe}}_{\text{Q}: \text{Q}: \text{Q}: \text{COMe}}_{\text{Q}: \text{Q}: \text{COMe}}_{\text{Q}: \text{Q}: \text{COMe}}_{\text{Q}: \text{Q}: \text{Q}: \text{COMe}}_{\text{Q}: \text{Q}: \text$$

Table 1. Cycloaddition of $\underline{1}$ with $\underline{7}^{a}$)

Olefin	<u>7/3</u>	Time/h ^{b)}	Product	Yield/% ^{c)}	Olefin	<u>7/3</u>	Time/h ^{b)}	Product	Yield/% ^{c)}
<u>7a</u>	1	18	<u>8a</u>	80	<u>7f</u>	2	18	<u>8f</u>	45
<u>7b</u>	5	18	<u>8b</u>	81	<u>7g</u>	1	18	<u>8g</u>	25
7c	5	18	<u>8c</u>	75	<u>7h</u>	5	18	<u>8h</u>	57
<u>7d</u>	1	18	<u>8d</u>	84	<u>7i</u>	5	18	<u>8i</u>	73
<u>7e</u>	2	48	<u>8e</u>	70					

a) Conditions for the formation of $\underline{4}$: $\underline{1}$ +NBS (2 equiv) in DMF at -20 °C for 1 h and then at 0 °C for 0.5 h. b) At room temperature in the presence of triethylamine (one equivalent to $\underline{3}$). c) Isolated yield based on $\underline{3}$.

Unlike 3-alkyl-substituted Δ^2 -isoxazolines, ¹⁴⁾ the 3-(diethylphosphonomethyl)- Δ^2 -isoxazolines 8 are expected to undergo regionselective deprotonation at the carbon substituted by the phosphorus moiety and therefore they will be useful as Δ^2 -isoxazoline unit-introducing reagents through the subsequent reaction with electrophiles. Some examples along this purpose were demonstrated below.

Treatment of $\underline{8b}$ as an example with butyllithium in dry THF at -78 °C led to a smooth formation of the phosphorus-stabilized carbanion \underline{A} . The subsequent reactions with aldehydes $\underline{9a}$ - $\underline{9d}$ or a ketone $\underline{9e}$ gave 3-(1-alkenyl)- Δ^2 -isoxazolines $\underline{10a}$ -

<u>10e</u> in good to excellent yields (Scheme 3 and Table 2). The anions \underline{A} and \underline{B} could be alkylated with a variety of alkyl halides <u>11a-11e</u> giving 3-(1-diethylphosphonoalkyl)- Δ^2 -isoxazolines <u>12a-12e</u> (Scheme 4 and Table 2). They could be again deprotonated at the same carbon with butyllithium in THF at -78 °C forming carbanions \underline{C} . These anions underwent oxidative elimination of the phosphorus moiety to provide the corresponding Δ^2 -isoxazolin-3-yl ketones <u>13a-13c</u> when treated with dry oxygen gas at -78 °C.

Table 2. Reaction of Δ^2 -Isoxazolines 8 and 12 with Electrophiles a)

		-				
Δ^2 -Isoxazoline	Electrophile	Temp/°C	Time/h	Product	Yield/% ^{b)}	
<u>8b</u>	<u>9a</u>	rt	12.5	<u>10a</u>	99	E only ^{c)}
<u>8b</u>	<u>9b</u>	rt	12.5	<u>10b</u>	75	E:Z=75:25 ^c)
<u>8b</u>	<u>9c</u>	rt	16	<u>10c</u>	66	E:Z=72:28 ^{c)}
<u>8b</u>	<u>9d</u>	rt	17	<u>10d</u>	81	E only ^{c)}
<u>8b</u>	<u>9e</u>	rt	16	<u>10e</u>	94	
<u>8b</u>	<u>11a</u>	rt	17	<u>12a</u>	80	
<u>8b</u>	<u>11b</u>	rt	11	<u>12b</u>	72	
<u>8b</u>	<u>11c</u>	rt	15	$\underline{12c}$	70	
<u>8c</u>	<u>11d</u>	rt	15	<u>12d</u>	75	
<u>8c</u>	<u>11e</u>	rt	15.5	$\underline{12e}$	91	recovered $\underline{12}$
<u>12a</u>	oxygen	-78	1	<u>13a</u>	70	<u>12a</u> (16%)
<u>12b</u>	oxygen	-78	1	<u>13b</u>	83	<u>12b</u> (15%)

Table 2 (Continued from the preceding page)

<u>12c</u>	oxygen	-78	1	<u>13a</u>	78	<u>12c</u> (12%)
<u>12d</u>	oxygen	-78	1	<u>13c</u>	57	<u>12d</u> (39%)

a) The carbanions $\underline{A}-\underline{C}$ were generated with butyllithium in THF at -78 °C and then the reactions with electrophiles were carried out under the conditions listed in this table. b) Isolated yield. c) Determined by GLC.

References

- A. P. Kozikowski, "Comprehensive Heterocyclic Chemistry," ed by A. R. Katrizky,
 C. W. Rees, Pergamon Press, Oxford, New York, Tronto, Sydney, Paris, Frankfurt
 (1984), Vol. 1, Chap. 1-16, pp. 413-491; G. Desimoni, G. Tacconi, A. Barco, G.
 P. Pollini, "Natural Product Synthesis Through Pericyclic Reactions," as ACS
 Monograph 180, ed by M. C. Caserio, American Chemical Society, Washington, D.
 C. (1983), Chap. 4, pp. 89-117.
- 2) R. H. Wollenberg and J. E. Goldstein, Synthesis, <u>1980</u>, 757; D. P. Curran, J. Am. Chem. Soc., 105, 5826 (1983).
- 3) G. W. Perold and F. V. K. von Reiche, J. Am. Chem. Soc., <u>79</u>, 465 (1957); V. Jäger, V. Buss, and W. Schwab, Tetrahedron Lett., 1978, 3133.
- 4) H. Grund and V. Jäger, Liebigs Ann. Chem., 1980, 80.
- 5) A, P. Kozikowski and A. K. Ghosh, Tetrahedron Lett., 24, 2623 (1983).
- 6) R. V. Stevens, C. G. Christensen, R. M. Cory, and E. Thorsett, J. Am. Chem. Soc., <u>97</u>, 6865 (1975); A. P. Kozikowski and A. K. Ghosh, ibid., <u>104</u>, 5788 (1982).
- 7) P. A. Wade and H. R. Hinney, J. Am. Chem. Soc., 101, 1319 (1979).
- 8) T. Kametani, S. -P. Huang, and M. Ihara, Heterocycles, <u>12</u>, 1183 (1979); A. P. Kozikowski and C. -S. Li, J. Org. Chem., <u>50</u>, 778 (1985).
- 9) A. I. Razumov and V. V. Moskva, Zh. Obshch. Khim., <u>34</u>, 2589 (1964) and Chem. Abstr., <u>70</u>, 140707a (1964).
- 10) All new compounds reported herein gave satisfied elemental and spectral data.
- 11) Nitrile oxide synthesis using NBS: C. Grundmann and R. Richter, J. Org. Chem., 33, 476 (1968); R. V. Stevens, Tetrahedron, 32, 1599 (1976).
- 12) These chlorinated products $\underline{5}$ and $\underline{6}$ are unstable but isolable through column chromatography over silica gel (hexane-ethyl acetate). The maximum yield in our experimentation was 71% (5:6=16:3 (1 H-NMR)).
- 13) The ether was used in order to remove the unreacted NBS which precipitated out of the solution. By this way, further bromination of $\underline{4}$ as well as bromination of the dipolarophile was suppressed to a certain extent.
- 14) Regioselectivity in the deprotonation of 3-methyl- Δ^2 -isoxazolines has been already discussed in Ref. 4.

(Received November 5, 1985)